Understanding Everyday Hands in Action from RGB-D Images - LEAR
Communication Dans Un Congrès Année : 2015

Understanding Everyday Hands in Action from RGB-D Images

Gregory Rogez
  • Fonction : Auteur
  • PersonId : 1006026
James Steven Supancic
  • Fonction : Auteur
  • PersonId : 1001177
Deva Ramanan
  • Fonction : Auteur
  • PersonId : 1001178

Résumé

We analyze functional manipulations of handheld objects, formalizing the problem as one of fine-grained grasp classification. To do so, we make use of a recently developed fine-grained taxonomy of human-object grasps. We introduce a large dataset of 12000 RGB-D images covering 71 everyday grasps in natural interactions. Our dataset is different from past work (typically addressed from a robotics perspective) in terms of its scale, diversity, and combination of RGB and depth data. From a computer-vision perspective , our dataset allows for exploration of contact and force prediction (crucial concepts in functional grasp analysis) from perceptual cues. We present extensive experimental results with state-of-the-art baselines, illustrating the role of segmentation, object context, and 3D-understanding in functional grasp analysis. We demonstrate a near 2X improvement over prior work and a naive deep baseline, while pointing out important directions for improvement.
Fichier principal
Vignette du fichier
1803.pdf (9.26 Mo) Télécharger le fichier
Vignette du fichier
screenshot.jpg (52.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01237011 , version 1 (02-12-2015)

Identifiants

Citer

Gregory Rogez, James Steven Supancic, Deva Ramanan. Understanding Everyday Hands in Action from RGB-D Images. ICCV - IEEE International Conference on Computer Vision, Dec 2015, Santiago, Chile. pp.3889-3897, ⟨10.1109/ICCV.2015.443⟩. ⟨hal-01237011⟩
744 Consultations
511 Téléchargements

Altmetric

Partager

More